Ethylene-Promoted Conversion of 1-Aminocyclopropane-1-Carboxylic Acid to Ethylene in Peel of Apple at Various Stages of Fruit Development

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a naturally occurring inhibitor of the conversion of 1-aminocyclopropane-1-carboxylic Acid to ethylene by carnation microsomes.

During cell-free experiments with membranes isolated from carnation petals (Dianthus caryophillus L. cv White Sim), the conversion of 1-aminocyclopropane-1-carboxylic acid into ethylene was blocked by a factor derived from the cytosol. Subsequent characterization of the inhibitor revealed that its effect was concentration dependent, that it was water soluble, and that it could be removed from s...

متن کامل

Xylem Transport of 1-Aminocyclopropane-1-carboxylic Acid, an Ethylene Precursor, in Waterlogged Tomato Plants.

Waterlogging is known to cause an increase in ethylene synthesis in the shoot which results in petiole epinasty. Evidence has suggested that a signal is synthesized in the anaerobic roots and transported to the shoot where it stimulates ethylene synthesis. Experimental data are presented showing that 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, serves as the...

متن کامل

1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene!

Ethylene is a simple two carbon atom molecule with profound effects on plants. There are quite a few review papers covering all aspects of ethylene biology in plants, including its biosynthesis, signaling and physiology. This is merely a logical consequence of the fascinating and pleiotropic nature of this gaseous plant hormone. Its biochemical precursor, 1-aminocyclopropane-1-carboxylic acid (...

متن کامل

Potamogeton pectinatus Is Constitutively Incapable of Synthesizing Ethylene and Lacks 1-Aminocyclopropane-1-Carboxylic Acid Oxidase.

A highly sensitive laser-driven photoacoustic detector responsive to [less than or equal to]2.1 nmol m-3 ethylene (50 parts per trillion [v/v]) was used for ethylene analysis. Dark-grown plants of Potamogeton pectinatus L. growing from small tubers made no ethylene. Exposure of shoots to white light, wounding, submergence in water followed by desubmergence, partial oxygen shortage, indole aceti...

متن کامل

The nature of O2 activation by the ethylene-forming enzyme 1-aminocyclopropane-1-carboxylic acid oxidase.

Ethylene is a plant hormone important in many aspects of plant growth and development such as germination, fruit ripening, and senescence. 1-Aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO), an O2-activating ascorbate-dependent nonheme iron enzyme, catalyzes the last step in ethylene biosynthesis. The O2 activation process by ACCO was investigated using steady-state kinetics, solvent is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Plant Physiology

سال: 1986

ISSN: 0032-0889,1532-2548

DOI: 10.1104/pp.80.2.539